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1. Summary and Introduction

>~

/ A theory and computer program are presented for computing the transonic
fan duct and free jet flow exhausting over the centerbody of a turbofan
engine and merging with an exterior stream flowing over a nacelle. The
physical problem under consideration is sketched in Figure 1. TFor
simplicity, the,‘prmry jet is treated as a solid circular body. The
exterior stream and fan duct flows are both inviscid and are represented
by appropriate differential equations based on nonlinear transonic small
disturbance theory. The position of the free jet boundary is found as
part of the solution by imposing the free slip boundary condition of con-
tinuity of pressure and slope at the linearized boundary interface. The
Mach number of the expanded jet at downstream infinity where the static
pressure is ambient is specified, and this, in turn, establishes the
total pressure of the jet flow by means of the isentropic relation. The
total jet mass flux is not a free parameter but is determined as a part
of the solution by the choice of the downstream jet Mach number and
application of the Kutta condition at the trailing edge of the fan cowl.
The mass flux at the fan plane (see Fig. 1) is assumed to be uniformily
distributed. Also required is the distribution of axial velocity along
a transverse plane exterior to the nacelle and upstream of the fan exit
(see Fig. 1), and the Mach number of the undisturbed external flow at

infinity.

Numerical solutions are obtained by finite difference algorithms based on
the original developments of Murman, Cole, and Krupp (Refs. 1-9).
Figure 2b shows a typical example of computed streamline patterns, jet

boundary slope and sonic lines, For this particular example, there

~L,
i
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occurred an imbedded region of subsonic flow adjoining the centerbody
downstream of the fan cowl exit plane. Figure 2a shows the corresponding
preassure distributions on the centerbody, on the interior wall of the

fan duct and along the free streamline dividing the jet and the exterior
flow. No comparisons have yet been made with experimental data.

_ This report presents a complete derivation of the theory, a description
of the finite difference procedures employed, and several examples of
calculated flows. A description of the computer program is given in the

Appendices together with instructions for its use,

N

REV SYM BOFING |- D6-41078 _).
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2, Derivation of the Transonic Small Perturbation Differential Equations for

the Flow im the Duct and in the Bxternal Stream

Since the entropy change across a weak shock is third order in the
pressure jump, we shall assume irrotational flow and introduce a velocity

potential } which satisfies the following differential ecquation:

fx@=FD+ g, (@ F) ~2 G, F. +df fr-o®

where x and r, are the dimensionless axial and radial coordinates based on

1l
duct length, and a is the local velocity of sound given by
2oat 4 r-0E-F -8 /2 f

with Ug denoting the velocity at infinity downstream. We now introduce
a perturbation velocity potential (' with a small parameter & in the

form:

f: %(x +EP)

Since small disturbances are propagated normal to the principal flow
direction in a nearly sonic free stream, we introduce a scaling factor in

the ry direction. This is expressed by

r=Tn
where ®¢ snd €& will be determined appropriately in the following develop-
ment .
REV SYM S@EIN® |vwp6-11013
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Boundary conditions on the body are linearized. Let rb(x) = d/2+:Ru(x)
define the boundary of the nacelle adjoining the free stream. Here & is
a thickness ratio associated with either the nacelle or the centerbody. At

= 4/2, the boundary condition that the flow be tangential to the nacelle

j;/fx = IR, x)

Substituting the perturbation velocity potential yields

Ty

wall becomes

Ir'c (3)
»(e(Pr/(/-;-e%) >zeP, = R (%) ‘
It is convenient to let

>~ = f/e (&)

and the boundary condition takes the familiar linearized form

@ = RX) at r- s cnd/z (5)

The velocity of sound to the first order in @ becomes
] 2 2 _ 2
“'/Un“ //M,o (r l)&cfx + OCe’) (6)
Substituting the precading relation for 0.2/U..2 into the differential
equation (1) and neglecting terms of the order of &% yield

2 2 .
?"xr%‘;ﬁ -'((-w)‘f‘] + "..r_’z:[?”_ + (fr/r']z Q&E)(7)

We consider the limit as Moo approaches unity while the perturbation
parameter & approaches zero. Thus, we define the limit
2/
C-m2)/€rlg — K

Letting

|M¢t 12

REV SYM ' SOTING |w0p6-41078 >
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(8)
t = em?

renders the ¥ derivatives of the same order as the x derivative and yields

the well known transonic small perturbation differential equation in the

form

Cr —(r+t)‘fx]$’xx + (r<{,.),./r =0 )

Equations (8) and (l4) enable us to determine € and T in terms of

the free stream Mach number and thickness ratio ¢f ; Leey,

r = M5 (10)

and

¢ = £YYMS

(11)

Also for K, we have

32/
n=ci-mhr )87 M2

Note that in the limiting process we retained some non-linearity in
the differential equation. Equation (9) is elliptic when
P < K/tr+0
and hyperbolic when
S > K /cred)
The quantitygK/(r-+ ) ig the sonic velocity.

We now apply a similar approach to the duct flow. Let Mj be the Mach

mumber at infinity downstream where the duct flow and outside stream have

REV SYM S@IIND | 006-41078 >
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the same static pressure. Then for the perturbation velocity potential ve

define

j=‘./j("“‘éj‘/) (12)

The velocity of sound in the duct is given by a relation similar to Eq. (6)

i.e.,
2
af/cj-" =1 /m7 = cr-e o, + 0l (13)

Substituting Eqs. (12) and (13) into the differential equation (1) leads %o

the equation

|=-M

€My J 4 (1k)

We shall retain the same scaling factor T as in the outside stream.

Thus

T’ GJ-M; : eMg (15)
and

€; = €My /] (26)

The transonic parameter li for the duct flow is

2 2 2
n, = G=M; )/6/”,,' = =M, h/(/-M‘; ) (17)

and the differential equation for flow inside the duct becomes

_-'—: —(rﬂ)?x]‘fxx -+ Z—.,—:y.‘(t,-*'?}./r) = o(ej)

E(I-MJ?)K/(I-M;) "'("")ZJZ: + ("7,,)'. /r =0 (8
For the duct walls defined by r, = a/z2 + J.RL(x), the linearized boundary
REV SYM . SOSI/N® |v0D6-41078
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conditions take the form

f{; /‘;; o~ éJ.‘Z‘ff

ff\"_’(x) (19)

PR 2 ’
4, = MR () /1, (20)

The transonic small perturbation differential Egs. (Q) and (18) are
non-linear and practical analytical solutions are difficult to obtain. 1In
the sequel, the equations are expressed in difference form and numerical re-
laxation techniques are applied to find the solutions for specific flow con-

figurations.

3. The Pressure Coefficient for the Transonic Small Perturbation Theory

We shall now find the relation for the pressure coefficient as calcu-
lated from the solution of g’ from the transonic small perturbation
differential equation. From Bernouilli's relation, Eq. (2), and the

definition of 7’ , we have

,,742 = 4 -4-('-3-11[: ~CI1+E Yx)a +oce')]
=1 —(f-I)N‘:e ?x + O(é’)

For the pressure p in terms of a, we have

plpa = @yei) (O — iy, ole)

Introducing the pressure coefficient yields.

(%‘:.=? 9”7&3)/’!&/2"2: = -nZ’E.’ﬁ‘

REV SYM SOFINS |v0.D6-41078 >
|PAGI 15




JIB-04a7

O1 4100 7740 ORIG.M/ 7

Following a similar procedure for the duct flow we obtain for the pressure

coefficient,

R 2 x
Cp; = (P obi) [2BLL < —2e; @, = ~REMa b /M

Since the pressures of the two streams balance at infinity, P‘j =P
and the condition that the pressure balance on the boundary streamline
between the two flows 1is easily seen to be

X - X
where the superscriptsao and j denote the limits of freestream and duct
velocity perturbation potentials, respectively, as one approaches the

boundary streamline.

Rate of Mass Flow in the Stream Direction

The magnitudes of C& at the fan plane evolves as a part of the solution
and is subject to periodic updating during the course of the relaxa-
tion procedure, For this purpose, we derive a formula for the mass
flow rate which is required for updating ?x as the computation pro-
gresses. Neglecting the cross component of velocity, we obtain the

following relation for the local density in the jet

///J = [“',/‘7:/2) //(r—:.:): [l—(r—-/)/“'lf(é/ﬁ-{-éjzzz/ﬁ)];:

R
Expanding and retaining terms to the order of El' yields

- re. 2?2 2-r to202 +00¢’)
/,/ﬂ/.-/-MJ [, b +E S /R]+ 5 &%, (21)1

This may be written in the following form by regrouping the second order

terms:

!

REV SYM
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f/ﬁ/ sU=M; 6 v, —(r—/)M €; ?/z (22)

+e- ‘M, (M )?
Since M é (/\'1 'l) s -e M Y= x)the third term may be reglected.

The rate of ﬁss flow per unit area then is given by

ff//’J = [1-M f‘, -(T-') /zl[l + (23)
+ ejff‘] +~ o(e’)

We note that this may be written

/’f/ﬂ [ +6€C-r )y -(n,w ‘9’ /2 (2k)
('1 )é‘/’

The last term is seen to be of higher order 'chan fhe preceding terms. The
2
reason for retaining second order terms in € becomes apparent when we
introduce
2 2 2 z
o I-M J = o . -~ e o
€,(1-M;) = €, MK, = & K,

and 2
Mo> o+ oce, )

into Eq. (24) and obtain

P_Z;, //JUJ = 1“"5;[1‘1’,‘)'" —(r+) 7;/1] (25)

Note that the mass flow is a maxinmum when the flow is sonic, i.e., at

f‘ = A, /(rw ) (26)
Solving Equation (25) for 5: ylelds

fe= [n -Ixk-2 (F+Om/c J/”""') (27)

D1 4100 7740 ONIG.3/71

s 2= o =i
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“ith the mass flow rate m computed from an intermediate solution, the
value for ?x at the fan plane is updated in terms of the values of P
from Zquation (27), keeping the total mass flux in the jet fixed. 4 rela-
tion similar to Eq. (27) for the exterior stream is easily written down

by replacing Kl and ¢ by X and ¢, respectively.
J

The Physical Problem to be Solved and the Development of the 3oundary

value Problem

We are interested in finding the pressure distribution over the back part
of a nacelle and on the duct centerbody over which the air from the fan
flows. The problem is idealized to the flow field illustrated in Figure 1
with a solid body replacing the central jet flow. Cince we linearize the
boundary conditions on the solid boundaries and on the free streamline
boundary between the duct flow and the outside stream, the idealized flow
is expressed as a boundary value problem for the perturbation velocity

potential. This is presented in Figure 3.

The boundary value problem appears to be well posed, since the value of
the potential or its normal derivative is prescribed on the boundary. How-
ever, the application of a Kutta condition at the fan cowl trailing edge is
an additional restriction which requires that the magnitude ot'wx at the
fan plane not be arbitrary, but must be determined from the solution of
the problem. This value 1s found from computing the mass flow in the free
Jjet far downstream and determining the value of gi at the fan plane which
satisfies conservation of mass in the duct and jet. The mass flow from the
duct calculated far downstream is not a sensitive function of the initial
guess for ’g at the fan plane (which must be input) but is dependent ulti-
mately upon the choice of undisturbed free jet Mach number because

of the Kutta condition. The input fan

REV SYM SOFING |vo. D6-41078 >
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plane boundary conditions are corrected from calculations of the con-
servation of mass as the solution progresses, The freestream Mach number
M, and the free jet Mach number, M., are two parameters which must be fixed

in the calculations.

The differential equations in the two regions are expressed in dif-

ference form and the flow field computed by means of relaxation techniques.

The Difference Eguation for the Interior Points of the Flow

To apply relaxation techniques to the boundary value problem in Fig. 3,
we divide the region into a rectangular mesh by lines parallel to the x and
r axes, The spacing is generally not uniform as greater accuracy is achieved
in minimum computing time by using a finer spacing near boundaries for the r
variable and finer spacing near rapidly accelerating or decelerating regions
of the flow in the x variable, Let the subscripts i, j denote the values of
the variables at typical interior points given by the coordinates Xg,r i
The second derivative in the x direction at x = x, and r = r 5 is expresged
in difference form for subsonic flow by using the values at points on the
hoth sides of the point i,j and is easily seen to be

G = L ¥ =i i =i ] R
X - Xy X. 4 r-4

’.* f ? _xl.— {

(28)
=26 ‘fl'ﬁj —2& ¥y, + 2dy Yper)

where

Cy = //<X1'+4 “X,-_,)(X,", —X;)
d; = 1) Chi= X)) (K, - Kies )

VACTER S CSRER

(29)

REV SYM SOLZING | 0. D6-41078 >
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The notation as used here is suggestive of the notation used in the Fortran
statements of the computer programs in order to make it easy for the user

to understand the computer programs from this discussion.

_ For the derivative with respect to r, we use a similar central difference

formula, for both subsonic and supersonic flow.

(r‘fr)rlr {'] .,-I}—'J-LT ) r‘”ﬂ-(‘{l i “’lg-l)} —r
J*l ‘: (( - -t J..c J= l) :
= 22jfijo —2@ + 400 + 26 it (30
where
aj2hem /'; (G'w' M-t yrf 'C’-l) (31)
}J' = Gfl/,/ G’ -r) / M4 -,J'
and we introduce the convenient notation
Fiap® (F e/ (32)

To complete the difference form of the differential equation, we
require a representation of the first derivative with respect to x. For

points equally spaced a AX apart, the difference form

(YMJ. - _,J ) Jaox

approximates Yx to the second order in AX at the central point i,jJ.
To obtain a second order form for yx when the points are not equally

spaced, we write

REV SYM SSING |vo.DE - +
sace 21
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P =Gy (Vr'w.j -7"1') -”(“'(V"f e i) (33)

and determine Cl 2‘ and d ¢ " appropriately by Taylors seres expansions

about ij. Let hl = xi+l -xi and h2 = xi -x

point 1i,J ylelds

11" Then expanding about the

Gila% +hMle +B Y lo v )

(34)
b dyi (8,9 = hiYeele b3 Yuacli +) = P

Setting the coefficient of ‘/‘ equal to 1 and the coefficient of the Z P

term equal to zero yields two linear equations to solve for cli and dli'

The result is
i = by b thehy) = KB = e 3:'
dn' = (., — X ) 42'

For inside the duct we define the difference form
v;j = (I-M;)K/(I-M;) —C(a+1) P (36)

= (I-MJ-I)”/(I '”:) —(rf')[c,,‘”,-,.,) - "1)’)
+4, z'“’:'i ~Yr-rj )1

and for the outside stream, we use

Uy = -(r-w)[C,,'(Y,-,,J“f,'j) +4,-(8,--"4-;’] (37)

REV SYM SOFING |v0.D6-41078
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By applying Eqs. (28), (30), and (36) to the differential equation (18)
when the flow in the duct is subsonic, we obtain the following difference

equation
2y (5 Viarg =5 "z'j +dy ¥ )) -
+2la;b . —@;+4;) Y, +b; %, ]1=0

In the relaxation process, we solve for the values of ‘/ along a column

X = x, in the flow. It is therefore more convenient to write Eq. (z8) as

a:

v a1 _(Vl'j &y ta, +b.l)%', + bj ‘/:'jﬂ

(39)

- V)'j (c) Yf“"J' + d?' ‘,?'~I J )

In this form, with v, K regarded as fixed, a set of linear equations for the

13
values of ‘, along x = x; results. The matrix of coefficients is tri-

diagonal and is easy to solve. The non-linear equation is sclved by itera-

tion, The quantity v, . is defined by the values of ? from the previously

iJ
iteration and then (f is found from solving Eq. (39). The calculations
are repeated with vy 3 determined by the recently obtained values of ? + The

iteration is continued until the required accuracy is achieved,

When the flow is supersonic, i.e., when v &4 O, we use a backward

i3
difference formula in the axial veriable x instead of the central difference

formula described above,

Hence,
[, ~(r+0) f, JZ: = Ve J (¢y., Qy’ - e:‘-qu‘-v ;T <. ?-zj)
(ko)
Y,'
REV SYM SOFING |vo. D6-41078 >
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7.

With Eq. (40) substituted for the first term in Eq. (38), we obtain
the following equation equivalent to Eq. (39) for supersonic flow:

a9.. +(y. €., —a.-b6)L +b:.9...
J(’lJ-l (Vl-u =i 5y 4 Y:J J‘IIJQI 1)

=t Vz'-:j e,, (ft'-l J - .., Y?'-lj )

The points at which v, 3 <4 0O tut Vi1 > 0O are parabolic. When this occurs,

Eq. (41) is modified by setting Vil g S 0.

For the interior points of the outside stream, similar equations result

but with u and u, -

replacing v and v, . s respectively.
1-1,J

i,d i-1.3

J

1,d

The Application of Wall Boundary Conditions to the Difference Equation at

Mesh Points Adjacent to Boundaries

The application of the boundary conditions near a solid wall is more
easily made when the mesh points are not included on the boundary but a half
mesh point width away. Consider first the lower boundary. Figure U4 shows
the points i, j = 1 and 2 and the boundary point where the boundary con-
dition is applied. The r derivative becomes

_ 2 _ Yan (Y, ~¥re)
$(rPdr = r:rc-ra){rb(" " = ] (42)

where for convenience we choose Ty =Ty = (rl - b) = Zrb Ty From Fig. 3,

the introduction of the boundary condition yields

(43)
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JI8-04a7

k(re)y = ~2n,MIROG) 26, (¢, -1, )
r(G-re)Me ’
= lb (‘fga.""n) -2, R,

where
Mt e Micn -r
“n=rb J /!t “3'-°)
The difference form of the differential equation then becomes

Vy;<er Viar =¥y, +ey -9, ”)

(L)
+ b, IY,': -“:‘/ ) - “, /?z'/
Rewriting in tridiagonal form for the ith column relaxation yields
"(b, +& Vu\ o *6,%2 = (45)
-V, (C,‘ Y)"'II "'d?' ”I:-l/) + <, ,??"
When the point is supersonic, we have instead,
(yv'-oi €r-, —bl)ﬁ'l -"b’ Yf’-: (46)

!
Vl'-i J (ci'-l 71'-/ ) “‘{)L[ ?;'.g ’ ) + %, P"

For the upper boundary, situated at r = Tos halfway between the rJ.

L(ry,), = 2 { -/a'fu u..) rf{}

r- (’;“[ ) c';‘

/
- -ZG-J' (‘,"- -‘{ttn -) -4'1“‘ RLCI’.)

(47)

m
and r.j + 12 Ve obtain a similar relation of the r derivative (see Fig. 5).
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a 2
wmere oy = M /6 (g =6 ) Ma (48)

The equation equivalent to Eq. (45) then becomes

¢,

2]&;:

..‘/}J:fjrl.qs

aj- "(V’-J;ei 'I'ﬂl-)r,-;.' s (49)
/
+d; 9, ‘_) — %y

g, -1y

When Vi £ 0, then Eq. (49) becomes
m

- Y V‘ - C' - . ]
a).'(,,}h_l“'( 3"'1,. =~y J_) Y‘J” (50)

=V,

l;ld'

/
(e,'./ ?’..’J:' —d"‘"l ‘/’“aj.l - d‘ ﬁ‘l.

For the point r = r the application of the boundary condition

Jm+1’
in Fig. 2 by comparison with Eq. (45) is seen to yield

"'(7(,);t449,'1L442;,,:)’=;£;*, + ‘y;f"‘f;)ifwl

(=x}
[
== ul'}::l ¢y “2;,;,, + JI.VI;IJ;*/) + A R, .,
[}
h o e /1; r .- 5
where 5 = ¥4 // 4;,, ( h;?1 ’j;.) . (52)

A formula for the hyperbolic case analogous to Eq. (4€) for the outside

stream may easily be written down.

Application of the Prescribed Inlet Flow“COndition to the Difference Equation

Along the line x = O in the duct as well as in the outside stream, we
prescribe the values of 95‘ at the points of the mesh r = rd, J=1to
Ipaxs let Yx = f(r) at x = 0 and define fJ ) f(rj). For Y at x= X s

we follow a procedure similar to that used for the r boundary conditions.
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For convenience we introduce the potential

¥z Ax —(r+1)¢

Then the x derivative term of the differential equation becomes

LK—(I’*I)Y,] zu = -%:\7&‘ //"'() (53)
= —6‘,1)1 J2(7+1)

Expressing this quantity in difference form leads to

(47), = 2 [(«™)"- (‘fxm)z] /(0 ~%) (54)

where the superscripts 3/2 and O denote the value of ‘7’; at x = (xl + x2)/2

and x = O, respectively. We deflne Xy ==X}, and we obtain, after factoring

Eq. (54),
(3/s) ) (%)

/ﬁ‘)ﬁ =2[ %+ Y ¥, -‘;‘,mj/m‘ #X,)

Since % = fj, vwe have '7;10)3 h'*“"“) ﬁ' and

ﬁz}x = X:ZI;,I ‘f‘ "5‘, - f +(?+l)£l[+_’;\ﬁ -l-ﬁ—f)“fl)?f: (55)

X, - KX, X -,

Replacing the variable ? yields

(\/;)‘ = -LhﬁX[‘/;j-‘;,:,; ﬁ'][l" —("')(éi—'.’f";}*ﬁz}(%)

&"x' x‘-’l
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We define gt =24~ LL' ‘,";- 'y «f-]. (57
'J q [ Kg =X JJ )
To make the notation consistent with the nomenclature for general values of
X, We write
W, = —(r+/) [C,,(‘I*J--‘f.)-) -44(“ ‘FJ]
(58)
where c,, = J./2(x2 -)LL) and dll = 1/2. The differential equation at the

point x = Xy and r = r 5 takes the following difference form

Ml - 4] et~ 4 G, oo
Xy =% Xy tX, '
= O

Expressed in tridiagonal form, this becomes

a.)-‘f’,j_, “(a;"’ 1’, +€, “Ij) 'f:; +h.flf¢l (60)
= uu‘ (dl "; -<, Y&f )
where c, = J./(x22 - xal) and 4, = l/(x2 + xl). Similar equations may

readily be written for the duct equation with v, ., defined by Eq. (56) with

13
k replaced by (1 - Mi)k/(l - Mi) The relation for j = 1 and j = Jp v 1
is easily found by setting a = O and adding the appropriate boundary term

to the right hand side. Similarly for j = Jm’ b, 1is set equal to zero and

Jm
4
the tem-d"?“-mded to the right hand side.

For subsonic points in the flow field, over-relaxation is employed by
the program in the manner of Murman (8). However, it was found that over-

relaxation at the inlet interfered with the satisfaction of the ?x boundary

condition at x = O. This was remedied by varying the relaxation parameter
w contimuously from unity at x = O to about 1.3 to 1.7 at x = X(10).
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9, Application of the Boundary Conditions for the Interface Between the Free

Stream and the Duct Flow

The boundary conditions of contimuity of slope and pressure across the
free streamline boundary will be applied at the line

r=q:(r3~..r+)/2. (61)

"’

for x D x, or 1>1,. We have shown that the relations between the stream-
0
line slope and ,the r derivative for both the interior and exterior flows are

Q) 2,/ ¢
q =MJ.R$/M°
r
7= R
r £ Y
Continuity of slope across the streamline then yields

(J) (%)
$’

Mo ¢, ” (62)

For the contimuity of pressure we have

‘9:‘(1) = 9:("’ )

Since this relation must hold at all points of the free streamline, we can

integrate from the trailing edge point to the point xi. We obtain

9’{(1)-?(1) ’/ x)-‘/ (x)

SRS
letting A¢,= f’ - ‘/" we restate our boundary condition as
(] o

(7,‘.)”:'/’}) = (/(J)(I:"G) =AY (63)
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The quantity &% is a constant for the entire free streamline and is computed
mp!

from the values at the trailing edge at each iteration.

We shall satisfy the boundary conditions on the free streamline at

the centerline point between r = r.j and r = rJ. e To simplify the re-
m m
lations we shall further assume that the lines r = r, tor=r,
Jjm-1 jm+2

are equally spaced a distance h. Since ‘f is defined only at the mesh

points we apply Taylor's expansions to find 7 at the midpoint r=r, =
Tims1/2c THUS, for ¢ on both sides of the free streamline, we have
“. 4., -29,1 B, ]
¢ = Nya =27, rel .,
Jw rs "Z‘.}[ ? r Nt (65)
(i
‘{ ) ? -+ % ‘{ } + = ‘(r’) .
=7,
J Jwm

where we have dropped the superscripts on the right hand side since the sub-
script adequately defines the 4 values. In the preceding two equations

we replace ({r and (frr derivatives by differences. As in Eqs. (33) through
(35) for the x derivative, we develop a second order difference for ¢ and

obtain

=(‘f,)“+3?,+,-4‘{“°))/sa

2 (65)
4| =(“‘f 30 — !1-'.)/”‘
r 1
f’f}
”»
Similarly for the second derivatives, we obtain 2
Bl = [ e e
rr '3’.."- _"_‘:‘_’3—':.4' r “,_ ri2
z 2 ).
; (f,l‘z "‘+A/‘| - e’h (66)
; G) 2
< - -— S =™ -
: Iy
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Substitution of Eqs. (65) and (66) into Eqs. (64) and solving for ?b,

and ‘/")yields the following two equations for the values of ¢@ on the

two sides of the streamline

9‘h.) gJ +2 /8 + b4 ” /8 =3h 9’ ﬁi.:"
¢ 9%, /8 =%y /s + 349

(67)

. o) ¢j) .
Two more equations for r" and Yr can be obtained from the
difference forms of the partial differential equations at the mesh points
i,:jm and i,Jm+l. The r derivative for r = z':j takes a form similar to Egs.

(42) and (47); i.e., .

0
+(r9, r,“ 'é['i?y" r,;,,,.(. “‘?‘."').]( = )
’afr“ - ‘0--';.‘: ‘

From the definition of a, and b, we recognize that Eq. (68) may be written

3 2 Py
()
+ (r?r)" l -2 [’L"'}:{r) - a‘f,,,(“'t'j-" ‘,t'j'_.,)] (69)
reY

Similarly for r = rJ +1? we find that
m

(o
(r?, ‘ =214 Ju t,f; 1‘,‘:.) - ha“"{ ] (79)

r= 5;“

Substituting Eqs. (69) and (70) into the difference form of the differential

equations yields, for vid“and ui:) +]?°
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v, (C ?H"J C,‘,'J fdz((' ) )+h‘& (’(J) a, /¢ --‘/ ) =0

Y 7

(71)

of o, +d o S - =
(c (,ﬂ).s; ‘,2 +1 'Y?-l)_#) r Aj Y’J* s ")
a0 0y)
For later convenience, we solve Egqs. {71) for ‘fr and and rearrange

r
the terms to obtain

hb q(a)._ -&; ":‘j;c +A, Yy, t 6

)
({{‘- /:f’?'/ +2 *A: "r‘f:: * BI

(72)

where
A= —(C,-U,-J-J, -+ bj'-il\
B, - "’"igv (e, ‘f,-,,;:, +d by, ;‘,\ (73)
Ay = V':f..‘" +a,
B, =~ V,-J-"( S Lrer i oAyl T )

When the flow on either side is supersonic (V-,-J' or V’-,- <0 ) )

then Eq. (72) holds but with A By and A, and B, defined by

X
A = Co M, Jutt ~ bi,_-.w
B' = -ul'-‘)'-oo[et'-l "f"')..“ gl ?"‘z)‘;-"' ] (7%
Ay = Q;..—C,-., Vf-'fcn
B = Vi i (& y Yy j' —ol "t‘-th)
With the boundary conditions of Eqs. (62) and (63), the quantities
(f{")(f(‘\ (f ‘J q @) may be eliminated from Eqs. (67) and (72).

Using Eqs. (62) in the form

D1 4100 7740 ORIG.M/ 7Y
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)
Q- H-.b fl“

2 (e®)
J-oc ) - bb;:"’ (7h‘§£:v 9 ) =0 (75)

yields from Eq. (72)

q' '+ o0 Q. Ag?f‘ —M b A ({' F Y
J:l j—o 3! ) 76)

2
-M’.b]ubl."‘”‘fr).gt *(M J“IB M b B) O

Mao

When we subtract Eqs. (67) we obtain the single equation

saf =9y =9+ 9%, iy ~3h (17,4 ¢,

e (77)

where Af is a known constant which for the final converged solution must
agree with the jump at the nacelle trailing edge and at infinity downstream.
Eliminating the r derivatives in Eq. (77) by Eas. (72) leads to

O 30y L4 )0 (94386, )y +9-3A 18,4 s,
(78)

!

= (438, ;M 38, /)4, +Bal b ) -8a¥:=o0

H-‘R

Equations (76) and (78) are the equations for j = Jpand § = J +1
required to complete the set of equations for the column relaxation procedure.
In this form, the matrix is no longer tridiagonal and more sophisticated
methods for solution would be required. However, the tridiagonal matrix is
restored by first eliminating "f, 42 from Eq. (76) and (78) and then

eliminating ‘f, « After simplification, there results
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2 .,
[mij’:BaL-er-)-fN a; (a;,,+3b;, )] P
2 ) 2 -
-{9[‘4) bj'bJ‘;,"'Aztst bJ‘:\‘*'M (a_,+¢ +3b 43:]3 (Fl.}m
2 2 (79)
+ 19Mp b T M A 3 Fiji

2 2 2
+Mj b B, - [3m70), + Mola; 136,016, - BM; b, by PO

I

[Msa,, (A =921 ¥;;

+{9M2a W—A[.’sM o) + 13 (32 +b; AN
- [M7h; (3a-+b~ ) +Miq 9, (@ ey 38,0 )] P 22
+M %, A )_'3/") ;_'-H"/J (32, + 5, )], —~5M,:”3;¢J;*'AV:O

(80)

Equations (79) and (80) are based on a second order expansion of ?
about the streamline points. A simpler first order theory can also be

derived. 1In place of Egs. (64) we write
.. - h :
(f?J + ) Fa CPP‘ lr:ri ‘H# O(h )
CJ) 2
¢ 11'*%‘971 + o(h?)

With ‘f', given by Egs. (65), we have

¢ = (3P CP?'J:L) /e

Similarly,

= (3% ~% Y /2

zJ';I
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10. Application of the Method of Relaxation to the Solution of the Boundary

Substracting these last two equations yields
20P = (ra ‘3';0 +39’J+‘—??:jm*2

This relation is simpler than Eq. (67) since it does not contain the first
derivative terms. The continuity of slope leads to Eq. (76) for the other
equations required to complete the system of column equations. The tri-
diagonal form of the system is preserved by first eliminating sz'J‘#’_?_
and then €.+

(9l
two equations in place of Egs. (79) and (80):

, from the two equations. This yields the following

g

L*
BZ) - ZMJ' b.l’; b);‘-H g

—0‘4 +,+M a; a,,,)q’,/ +(3M} 5 ) b
+Moa J;,;*I z)‘fzj —My b./ (3 J+/"'A)7z
= [M:E%B' 1:“4,
M.:a:,'-h“( -3a; )‘;’,J- +(3M2 a; a; , bef‘:x,);’,)-ﬂ

—[MJ-’bJ-b-+,+/"1~ : °..,3 Fa) +2 )
= (M;5; B, Mzd 0B,) +2M3 R, d;, A

Value Problem in Figure 3.

In the foregoing analysis, we have formulated the difference equations
corresponding to the partial differential equations of Egs. (9) and (18)
for points in the interior of duct and outside stream, for mesh points near
the solid boundary, on both sides of the common streamline of the two flows,
and near the inlet regions. We have expressed these equations in a form for

solving the values of f along & column of fixed values of i, These equation#
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are non-linear in cf since the quantities ui P and vy j also include the

term S’U . When ui,j and vij are assumed to be fixed and determined by
the starting or previously iterated values of ). , then the set of
equations for the i column is linear in 5",:!‘ . The matrix is tridiagonal in
form, and is especially easy to solve, Each column is iterated until con-
secutive approximations of S’IJ' are within a specified accuracy. For a
more complete description of the numerical procedure the reader is referred

to the papers by Murman, Cole and Krupp in the referencesat the end of

this documnt;

The required relations for computing the flow field have been npresented
in sufficient detail in the preceding analyasis to set up the procedures for
the numerical evaluation of the flow field, 1In Appendix I, the results of
the foregoing analysis will be summarized in a form used directly in the re-
laxation procedure, In this way, the reader will be able to follow more

easily the computer program coded to perform these calculations,

Calculation of Streamline Pattern and Duct Mass Flow

The application of the Kutta conditiocn at the nacelle trailing edge
requires that &  at the fan plane not be arditrary but be determined as
part of the solution for a specified value of MJ far downstream., This is
found by requiring that the total mass flow at the duct inlet be equal %o
the calculated far downstream value, For convenience we prescribe a uniform
mass flux distribution at the fan plane add sssume that the streamlines
far downstream are also parallel., The mass flow rate is then given in

terms of s’x by Eq. (25).

To evaluate the mass flow rate in the free jet far downstream we must
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determine the width of the duct flow at this station. Because of the
linearized boundary condition and the rectangular mesh, the streamline
pattern can be approximated by integrating the flow direction along lines

r equal constant (J equal constant in the mesh). Thus
x
Rix) =Ry = i% /_%x)dx

In terms of the perturbation potential this becomes

X
R(x) -, = ﬁ/M,:/M_,'a) l‘)’,‘ A x

The scaled variable ¢ is given in terms of the physical variable s by

r=Tr . Since TE = S we obtain, finally,

x
R(x) =Ko = A’(M,://‘f) £‘)’,.‘(X (81)

The derivative ‘,'. at the point r, is found by fitting a polynomial through

J

the mesh points along the line xi = constant, differentiating with respect

to r and setting rs=r The integration in x is performed by the

J L]
trapizoidal rule.

To calculate the mass flow rate far downstream, the quantity m is
computed by Eq. (26) for values of R(%) on the boundaries and in the center
>f the duct flow. Using a polynomial fit, the total mass flow is found by

integrating fR""
m, = r, m rdr

where Rl and Ry Aare the final values of r calculated by Eq. (81)

for L= 1 and = J- . Withma = -t/AO
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12.

where AO is the boundary area of the duct between ro and Tim?
Zq. (27) yields the appropriate value of %, to assign to the inlet for
the next iterations. The inlet value of ¥ is updated from time to time

until the relaxation converges to suitable accuracy.

Examples of Calculated Flows

To demonstrate the operation of the program TEA-343, ?;he configuration
described by the coordinates in Tables 1, 2, and 3 was used. The maximum
radius of the centerbody wall and the end of the fan cowl and outer duct
wall all occur at the axial position x = 1 in the dimensionless variables.
The thickness ratio 4 used in the parameters K and € was chosen as the in-
crease in centerbody radius from x = O to the maximum radius at x = 1
divided by the section length. For the data in Tables 1, 2, and 3, this
value isd= 0.15. For convenience, the boundary valuegat x = 0 in the
duct was chosen as uniform over the fan plane. The boundary values along
x = 0 in the outside stream were chosen to vary with Ii like l/(r12+l)3/2
which is the variation for the incompressible solution fro a source and
sink at the axial positions x = * 1l in a uniform stream given by Milne-
Thomson (10) on page 486. w1th<;;on the fan cowl at x = O given by Cp =
-0.06 the flow was computed for a Mach number of the exterior stream of

M . = 0.9 and a duct far downstream Mach number M., = 0.9. The duct Mach

00 J

number MJ was increased from M.j = 0.9 to 1.25 by increments of .05, Each
step required 200 to 300 iterations and complete convergence was not
necessarily achieved at each step., It was found that the iterations failed
to converge if the first estimate of@at the inlet of the duct was too

far from the correct value., A first estimate of?x is found by satisfying
the conservation of mass flow through the fan plane under the assumption

of a uniform flow at Mach
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TABLE 1

COORDINATES AND SLOPE OF NACELLE

I X R RUX DER
—\ 040000 1.406485 =-,011267 -,001966
2 «030000 1.106106 <-.033608 -,005874
3 «050000 1.1085950 =.055793 =~,.009751
e aN76000 1.105R32 =,086360 = 014766
-] «110000 1.105020 -,121287 =-.021198
6 «156 000 1.103906 <=.168307 <~.,029u416
7 2206, 000 1,402206 =,220704 ~,03857%
8 «2564000 1,100052 <=.27191 ~.,047538
9 «308008 1.,097228 ~.326145 <-,.,057003

3 - -

11 «410000 1.090527 =~ 420923 ~-,074268
12 «460000 1.006608 =.4716566 =,082L37
13 540000 1.,082286 =,5173)6 ~-,0904i4
14 «560000 1.077570 =-.561842 ~,098198
15 «604000 1,073102 <.60012%1 <~-.,104888
17 «666000 1.066540 <=.650%3 -,113771
i8 «688000 1.063768 ~=.670826 <«,117246
19 «710300 1.0613154 ~-.688829 ~-.,120393
20 .730000 1.058718 <-.705011 -.123221%
21 <750000 1.056225 =.721015 =-.126018
23 «790000 1.051074 <=.752W85 -,1315290
24 2810000 1.0684L17 =,767W0 ~-.134L225
25 830008 1,045705 =,783268 ~-,136899_
26 «850000 1.042941 =.7328390 <~,139542
27 «870000 1.040426 ~-,813335 -.142154
29 ©910000 1,036335 ~.842695 ~.167285
38 «9300080 1.,031364 -.857111 -,167808%
3 = = kR
32 «970000 1,025272 =,885412 -,154751
33 «99000C 1.0221%3 -~.899298 -,15717°?
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TABLE 2

COORDINATES AND SLOPE OF UPPER FAN CONTOUR

I X R RLX DER
1 010080 .966365 -,006978 =-,001220
2 «033000 ¢e966320 -.018620 -,003254
3 «050000 0966239 ~=,027177 -.004750
—b 076000 _ .966099 =,033f38 -,00G88A
] «110000 «965892 «,034L333 -.006001%
() <154 000 ¢ 965666 ~,021931 -,003833
—1 . 2206000 965601  .010289 .001798
.8 «254 000 «965902 « 06175 «010800
9 «308000 «966832 «139082 «024309
A0 360000 2 L968S16 236757 2 .061032
11 <410 000 «9710 061 o 366442 060551
12 « 480 000 e 974627 7742 «083460
A3 2520000 979441 LRA76GMT  ,10969¢
16 «560 000 « 985653 « 797177 «139330
15 «604000 « 9926407 «950629 «166150

17 «664000 1,001588 «8534L88 «149172
18 688000 1,005415 «970308 169589
19 «710000 1.009321 1.0494638 183426
20 o730000 1.0129061% « 998263 174472
21 «750000 1.016193 « 87040 3 «152128
22 770000 1.019413  .842S37 162014
23 «790000 1.02194% « 802680 «16025¢€
24 «810000 1.024615 «709331 «123976¢
25 «830000 1.026789 «521981 091231
26 «850000 1.028242 « 308549 «053928
27 «870000 1.028963 «118659 «020873¢
20 990000 1.029208 .044472 ,007268
29 «910000 1.029176 -.096524 -.,016870
30 «930000 1.028296 <-.409605 -.071590
[ ] 67 ol - 7
32 2970000 1.0256400 <=,.5205%9 -,090981
33 «990000 1,022617 -1.053439 -=,184119
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number Mj

the fan cowl (Fig.l), and the program corrects this value

through the fan exit plane at the trailing edge of

during the computations,
The distributions of pressure coefficient on the centerbody
and on the duct flow outer boundary are presented in Fig. 6 for

M:; = 1,2, The coefficients are based on the exterior free

3
stream dynamic pressure. The velocity is seen to be highest

and the pressure coefficient lowest at the point of maximum
centerbody radius x = 1, The streamline pattern of this flow

is shown in Figure 7. The duct flow is accelerated to supersonic
velocities leading to the sharply curved sonic line terminating
close to the fan cowl trailing edge. Note that the flow near

the centerbody is rapidly decelerated by a shock resulting in a
small local region of subsonic flow.

Figure 8 shows the pressure distribution on the centerbody
and duct flow free streamline for a duct Mach number of Mg, = 1.25.
For this value of the Mach number, the duct flow remains super-
sonic downstream of the curved sonic line as seen in Figure 9.
The flow decelerates from the maximum value at x = 1 but does
not become subsonic, The streamline pattern is very similar to
that for Mgg = 1.20.

The centerbody of Figure 9 was extended downstream as shown
in the streamline pattern of Figure 10 (See Table 3). This
corresponds more closely to the actual flow conditions and the
resulting pressure distribution shown in Figure ll is similar to

that of Figure 8 in the vicinity of the fan exit plane.
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[\ Cp ON THE CENTERSBCDY

1.0 1

1.8 -

2.01

Cp ON OUTER
DUCT WALL 7

FIGURE 6

| \—Cp ON FREE JCT

BOUNDARY

MACH NO. OF
EAPANOED DUCT FLOW =1.20
MACH NO. OF FREE STREAM = 0.20

DISTRIBUTION OF THE PRESSURE COQEFFICIENTS
ON THE CENTERBODY AND FREE STREAMLINE
BOUNDARY. PRESSURE COEFFICIENT IS BASED
ON THE DYNAMIC PRESSURE OF FREE STREAM.
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Cp ON CENTER BODY

-.2 L
o — . : =
2 4 6 20 22 2.4 26
2 1
4 1
Cp SONIC
6 ——F== -
Cp
8 1 MACH NO. OF
EXPANDED . DUCT FLOW :=1.25
.o A MACH NO. OF FREE STREAM :0.90
12 1 =(P-Po) /& P ML = ~2¢ ¥,
Ce ON OUTER ep =(P-Fn)/ § P My = ~2€ 7
1.4 1 DucT WA:7
Lo | Cp ON FREE JET BOUNDARY
1.8
2.0 4
2.2 1
FIGURE § DISTRIBUTION OF PRESSURE COEFFICIENTS ON
THE CENTERBODY AND FREE STREAM BOUNDARY.
PRESSURE COEFFICIENT IS BASED ON DYNAMIC
PRESSURE OF FREE STREAM.
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APPENDIX I: SUMMARY OF THE EQUATIONS USED IN THE

COMPUTER PROGRAM TRANSDUCT

The equations to be solved at each column i have been expressed in a
form which yields a tridiagonal N x N matrix for the coefficients of the
variables, where N is the number of values of ¢ in a single column. The
elements of the matrix are described by three N dimensional vectors. The
coefficient of the diagonal term ¢ 13 in the J® equation is the com-
ponent of the vector denoted by

DIAG(J)
in the program. The vector of coefficients of q& ol to the right of the
diagonal is designated as

SUPER(J)
while the vector of coefficients to the left of the diagonal 901 j-1 is
designated by

SUB(J)

1. Coefficients Based on the Mesh Points

wWhen the distributions of the x, and r, are established, the co-

J
efficients depending upon these quantities can be determined once and for

all at the ouset of computations. For the x coordinate, we define
2 2
cl = l/(x2 - xl)
ey = /(g - x) () - %)
d1 = 1/(x2 + xl) (81)

dg = L/(xy = xy 1) (2 -2 )

ey L/2(xy - xp)y0q = (2 - xy ) e
4y 2y = (x4 - 3) 4y
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For the r coordinate, we obtained

alto

zm.1 = (rd + ’,1-1)/2 z'.1 (r:j+.‘l. - rJ-J.) (r'j - rd-l) J > 1
bJs(r‘1 +.'J+l)/2 ry (r3+1-rd_l) (;dd-rd) I >1
The value of bl follows the preceding formula for ro = 2rb - rl, where Ty
is the mean scaled radius of the inner duct wall. All the preceding co-

efficients are computed in the subroutine MESH,

2. The Vectors: SUB, DIAG, SUPER, and RHS

In the mesh for the boundary value problem described in Figure 2, we
define the maximum number of r = constant lines by JMX (Jm) and the
maximum number of x = constant lines by IMX (iw). For I & 10, the flow
field is divided into a duct flow and the ocutside flow over the nacelle
which are solved separately in the relaxation process. The number of points

along constant x, inside the duct is JM ('jm in the text).

The vectors, SUB, DIAG, and SUPER are N dimensional, where N is the
number of points in a column. The vector components are identified in such
a wvay that

SUPER(N) = SUB(1) = 0;
Thus, the Jth equation for each I is seen to be described by a FORTRAN

statement of the form

where P(1,J7) = ¢ 4 and RHS denotes the right hand side terms of the
equations., The subroutine TRISOL which solves the tridiagonal system then

is called by a statement of the form

SUB(J)*P(I,J-1) + DIAG(J)*P(I,J) + SUPER(J)*P(I,J+1) = RHS(J) (82)

REY SYM DOFING | D6-41078
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CALL TRISOL(SUB,DIAG,SUPER, RHS, PHI, AUX, N) (83)

The quantity PHI is the vector solution of P(1,J) for fixed I in the set of
equations described by Equation (82), AUX is an N vector of storage required
by the program. By comparing Equation (82) with the equations in the
analysis one can write down the formulae for the vector components of SUB,

DIAG, SUPER, and RHS.

The quantity IO, (io in the text) denotes the line x = constant of the
mesh which intersects the nacelle line of Figure 2 nearest the trailing

edge. For all values of i £ i, the column set of equations is divided

O)
into two parts, the duct flow and outside stream; and the two sections of

the column are solved separately in the relaxation process. For i D> i

0)
the entire column enccmpassing both flows is solved simultaneously.
3. Formulation of the Column Equations
Because of the initial condition
Y = 2(r) (84)
at x = O, the column i = 1 is a special case. From compariscn of Equation
(82) with Equation (60), we have
SUB(J)-l‘1 J=2% g
SUPER(J)-bJ J=ltoy, -1
(&)
DIAG(J) = --(v]_:le:l + a, + bJ) J=2¢t0 -l
RHS(J) = V1 (cl‘faa - dlf:j) J=2¢%o0 -1
SUPER(JM) = O
REV SYM SOIINS |v0.06-41078 3>
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vhere f‘j = f(rJ) and

2 2
= (l-Mj )k/(l-M” ) = (¥ +1) [Cu( ?23‘ cfl,j) + (86)
dufJ]
By comparison of Equation (82) with Equations (45) and (49) we
obtain
DIAG(l) = =(v,.c. + b )

lll

RHS(1) =. -v (c 21 - dlfl) + Q'lR'(xl) (67)
DIAG(JIM) = °(v1'3mcl + ‘Jm)

RES(M) = in (ey ?23" - 4 f5p) = o R'(x)

a
where d‘ sNJ'?b/M.:r.(fz‘ro)

and e(,-M) oA [ Mty {74 "'3‘_:'\ (88)

The JM-1 values of ¥ i are solved by TRISOL and iterated. For i = 1
and J' < 3 < Jm’ we obtain similar relations. For J =1 toJMXl - JM =

JMX-1-JM, we define the vectors for the column above the nacelle as

SUB(J) = .JI*J SUB(1) = O

SUPER(J) = bj.f 3

DIAG(J) = = (Wijmey ©1 + 8jge] * Dypyy) (89)
RHS(J) = - M mey “1?23_*3 d]. J.o'.j
and

: SUPER(JMXL-JM) = O

5 DIAG(l) = = (“1.1.4-1 e, + bJ.ﬂ.) (90)

g RES(1) = ~ugy g (e3¢ ayper = Qfgpn) * R, (%)

a
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wnere W, ;= K = (r40)e, (4 ~%.) vd, ;1

(91)
and
X 5= ’3:»1/2/"3»1. (®ymez = Tim)
Since only subsonic inlet conditions will be prescribed, the case “1.1
and v,, < 0 is not considered, |

T}

. P
4, Formulation of the Column Equations 2 £ i = _ig

For 1 € i S 10 and inside the duct, we have from the comparison of

Equation (82) with Equations (39), (45), and (49), when Vi > 0,
SUB(J)-AJ J=2¢t 3
SUB(1) = O
SUPER(J)-bJ. J=ltoy -1
SUPER(JM) = O (92)

DIAG(T) = '(vid ey va, bd) J=2td -1

RES(I) = - vy (e Py 1o+ .9, _ y) Je2tey -1
DIAG(1l) = -(vu e, *+ bl)

RES(L) = vy (&P 4 11 * Uy o)t (%)
DIAG(JM) = - (v“m e+ ‘Jn)

RHS(M) = - Vgy (e @y vy * 4Py ag) “ N2 R (%)

By comparison of Equation (82) with Equations (41), (46), and (50), we

bave for the supersonic flow, < O0Oand v < 0, the following terms

Vs i~1 3

in place of the ones above:

DIAG(J) = ¥1%. " Ly -t:‘1 ,2(3(3'.-1

REB(J) = vy o (& 1Py “’1-19’1-23),2"’ <3 -1 (93)
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DIAG( ) = vy 147 ™0
RHS(1) = vy 4 (°1-1‘fi-1,1 "’1-1"’1-2’4) + o )R (x))
DIAG(JM)= vi—l.jm ¢y 4y

RHS(JM) = i-1g (ei-l"i-l,jm °di-lqi-2:]m) - ¥R (x)

For L L 1 £ 1, in the exterior flow over the nacelle we have,

analogous to Equations (92) and (93),

= < -3 -
SUB(J) "3e3, 2 €) € ipax "I -2
SUB(1) =0
SUPER(J) = bJ+Jm (9%)
SUPER(JMX-JM-1) = O

- - <3< -3 -
DIAG(J) (“1.1"'.1“ + “yed, + meJ) y 2 3=, dnt

RESW) = -uygey (o SPran oy * 4T i1 g )5 28 8nag dn 2

For comparison of Equation (82) with Equation (51) we have

DIAG(1) = -(ugy ,y € * by )
m n

RHS(1) = '“1,1_+1(°1({1+1’3n + 1% (ft-1,,1;1) +o(gR' (%))

vhere <& 3 =T Ty ) The hyperbolic case u,, < 0

Jn"l/ 2/rim+l (r"m"'z ) n 4
can be written down by following the pattern of Equations (92) anmd (93).

The equations, JMX-JM-1 in number, are solved independently of the duct flow.

Pormulation of the Column Equations i > 1,

For L > io, the points are downstream of the trailing edge of the
nacelle and the entire column of equations to be solved simultaneocusly

encoapasses both the duct and exterior flow. PFor all points except

REV SYM : SOSINS |v0.Dg-11078
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J =1, Jn’ and J.+1, ve have

SUB(J) = .J SUB(1) = O
(95)
SUPER(J) = bJ SUPER(JMX-1) = O
For J < Jﬂ’
DIAG(J) "(viJ ei+a.1 +bJ) for vi,j>° -
= (vi-l,jci-l -‘d-bd) for viJ< 0
RHS(J) = vy (ci ?14-13 diqi-lj) for Yi4 >0
= vy (&g Fay=ei1Pray) for vy O
For J D J' -1,
DIAG(J) =-(uide1 ‘4 +bJ) for ui")O (97)

(“i-ljci-l -a, -bd) for Uy <0

m{s(J) = -uid (ciyi'.'l,’ + diqi‘l") for “1.’ >0

R STRLBL ST, FUTPRELIL PR

For the lower boundary condition we have
DIAG(1) = - (v,, e, + b)) for vn> )

Yy Sia1 —bl for vu< 0

¥4 (ci({h];l + di({i-];‘].) +°(1 R'(xi) for v, > 0

RHS(1)
v (o -4 Pia) * KR () for v, <o
] F) i i1
The calculation of the vector components for JM and JM+l resulting from
the boundary conditions on the free streamline are somewhat more complicated.
Let DIAG(JM) and DIAG(JM*1) denote the quantities computed from Equations
(96) and (97), respectively. Then from Equations (73) and (74) we see that
Al = nﬂalmﬂ + ‘Jml
31.' -RAS(JM+1)

REV SYM SOFINGD |w0.D6-41078 >
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A2 = <~DIAG(JM) - bjm
——
32 = RHS(JM)

n Im
& = ’ﬁo“;;l 3"3;1)
& = “ibs_u
and
G = Py %"y & Gg = “: ®5 +1
G = Py 8 Gy,
G; = 3838, Gg = “;"’am
%, = 98, G Gy = B st
c.5 = BM‘?aJn *8,
Then for JM and JM+l we have
SUB(JM) = G,
DIAG(JM) = -(G2 + GBAa)

SUPER(JM) = G, + GgA,

RHS(JM) = -GgB, + G,B, + Y- ¢
SUB(MM+1) = GgA, = G,
DIAG(JM+l) = G, - GSAJ.
SUPER(JM+1) = -G,

RHS (JM+1) = 090‘{ - GgB, + GsB,

(98)

(99)

(100)

(101)

3 The G, constants sre computed once and for all at the beginaing of
i
N : calculations by the subroutine MESH.
]
e
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1. The Input Data Cards

APPENDIX II: INSTRUCTICNS FOR USE OF THE PROGRAM TRANSDUCT

The parameters required by the program are read in by a namelist called

PARAM. These parameters are designated by the notation listed and defined

below:

Namelist PARAM

LSERES Series number of the flow configuration.

LRUN Run number of the series,

XMA Mach number of undisturbed exterior stream,

XMT Mach number of expanded fan jet flow far downstream. When
starting from an initial parallel flow (MCDIN = 1), XMJ
must be less than one for the solution to converge., If a
supersonic value of XMJ is required, then a sequence of
solutions with XMJ incremented by .05 or .l must be run
until the value of XMJ is reached.

RMAX Maximumm number of iterations to be computed, This is
chosen on the basis of maximum computing time allowed for
each run and is discussed at the end of this section,

IMX Total number of radial grid points defining the mesh (j
index),JMX = 41 for the examples described in the report.

M Total number of axial grid points defining the mesh (i
index), IMX = 60 for the examples described in the report.

I0 Index for the value of x nearest the trailing edge of the
fan cowl, Grid must be constructed so that trailing edge
lies at midpoint between grid points X(I0) and X(IO + 1).
10 is 33 for the computed examples in the report,

JM Index of largest radial mesh variable in the duct flow, JM =
20 in the example flows.

MCDIN If MODIN = 1, potential field is initialized for uniform
flow, If MCDIN = 2, potential field from cards punched on a
previous run is read for the initial potential field, P(I,J).

MODOUT If MODOUT = 2, the-poteantial field from the solution is
punched on cards, If MODOUT = 1, no data is punched,

REV SYM SIS | v D6-41078 .
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Namelist

Linear

CPNAC

PXIN

DRFAC

D1 4100 7740 ORIG. /74

PARAM

If TRUE (T), the linearized subsonic flow is computed,
If FALSE (F), the complete non-linear transonic small
perturbation equations are solved.

Over-relaxation parameter for subsonic columns. A value

of 1.k is suggested. However, it may vary between 1 and

1.9, but larger values than 1.} may lead to divergence of
the solution.

Coefficient of pressure on the fan cowl at left boundary
of Fig. 2 for computing ¢ which in the present formulation
must be restricted to subsonic values. This number is
usually taken from experimental measurements., The remain-
ing values along x = 0 in the outisde stream are computed

to vary like 1/(r1+1)3/2. This is the same as the incompres-

sible solution from a source and sink at x = + 1. (see p.
486, Sec. 16-26 of Milne-Thomson (10)). This formulation
wag chosen for simplicity and convenience and should give
a fair distribution for most calculationms.

Number of iterations between updating of @ value at duct
input. When the number is large, the soluticns may later
start to diverge if cvaalue is not correct. Suggested
values are 20 to 100.

Starting inlet value of ¢ at the fan plane. In the present
form of the program the tﬁstribution of ¢, is uniform across
the fan plane. This value is updated ew.z‘ry NA iterations
when WPX 9 O, A first estimate is required and a reason-
able value is obtained from Eq. (27) using

m = Ap/A,

with the aid of Egs. (1l), (16), and (17) to determine Ky~
The quantity Af is the duct area of the fan plane and A,

is the area of the duct at the transverse plane through the
fan cowl trailing edge.

Stretching factor for adjacent mesh increments in radial
direction. Used for expanding the mesh in the far field
where the flow does not change rapidly. DRFAC must satisfy
the inequality: 1 < DRFAC <2, Values of 1,15 and 1.2
were used in the examples in the report. Its value is
determined by how many points are in the grid and how far
mesh is to be extended.

Maximum error allowed for convergence. If the maximum
difference between two iterated values of ¢ becomes less
than ERR, the computation is terminated; otherwise, the
program is terminated after NMAX iterations. Suggested
value for ERR is 0,.0001.

~
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Namelist PARAM

WPX Factor for updating ¢4 at duct inlet, O £ WPX £ 1,
If WPX = O, then old value is retained, If WPX = 1, then
new value computed from mass flow far downstream of duct
is used, WPX = 1/2 updates with the arithmetic mean of
former and newly computed values. Until one observes how
the updated values change.every NA iteration, the value
of 1/2 is a safe value for starting,

NP Number of iterations between intermediate printout.

A typical set of PARAM data cards is presented below. Each card is

punched starting in column 2.

$PARAM MODOUT=1,
LSERESs5 , MODOUT=2,
LRUN=1, LINEAR=,T,,
XMA=O.8, LINEAR=.F.,
XMJ=0,85, Wl=1.3,

’ CPNAC==0.06,
JMX=hi]l, NA=_0O,
DMX=60, PXIN=s1.21,
10 33, DRFAC=1.15,
IM=15, ERR=0,0001,
MODIN=2, NP=20,
MODINel,

For the parameters MODIN, MCDOUT, and LINEAR, the last of each pair
of cards read is the information used by the program., Also, more than
one parameter may be punched on a single card, A space must be left

bestween the comma and the next parameter name.

After the PARAM list is read, then a single card with 12 integers
punched according for FORMAT (12I4) is read., These are index values of
the x grid at which intermediate values of ¥ and ¢, are printed out

every NP iteration.
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The coordinates for the duct and nacelle boundaries are read by
the subroutine BODY along with the axial coordinates for the mesh points,
If MODIN in the parameter list is set equal to 2, then the cards for
P(I,J), the values of 7 at the mesh points from a previcus run must be
included at the end of those data cards read in by the subroutine BQDY.

In summary, the data deck for the program consists of the following
(see Figures 12 and 13):

1) Title card: TRANSDUCT.

2) End of record card (6,7,8 punches in column 1),

3) PARAM cards,

4) Card for the twelve intermediate values of the x index for which inter-
mediate values of the potential ¢ and the derivative % are printed
every NP times. Card FORMAT is 121k,

5) Coordinates of the x grid points., Punched on cards according to the
FORMAT 10F8.6.

6) Deck of boundary data cards, The make up of this deck will depend upon
how contours are defined and data are read by the subroutine BODY

(see Figure 13).

7) For MODIN=2, the (f grid values punched from a previocus run must be
included,

For the computed examples described in this report, the running time
was 0.61 seconds on the CDC 6600 for each iteration with 41 X 60 = 2460
grid points, Since the number of computer operations is almost directly
proportional to the number of grid points, then the running time can
quickly be estimated for grids with more or less points than 2460.
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Suproutine Body

This is the subroutine in which the wall boundary is read and the wall
slopes computed at the axial positions of the mesh. The Y or axial
coordinates of the mesh points are also read in this subroutine with the
statement:

2EAD (5,1010) (%X(I), I = 1,IMX)
1010 FORMAT (10F8.6)

Since the contours for the centerbody, outer walls of the duct, and the
fan cowl are not defined in any standard convenient coordinate system,
this subroutine at least in part may need to be reprogrammed for each new
geometry. The contours are fitted by a spline program, then the values of
the radial coordinates and the slopes at the mesh points X(I) are computed.
When coordinates are used to describe the contours, the set up of the deck
described in Pigure 13 is suggested with appropriate read statements

included in the BODY subroutine.

The subroutine SPLINE used by BODY to fit the coordinates is called by
the statement

CALL SPLINE (MODE,N,X,Y,D,E,W,JJ,X8,YB,YP,YPP)
Mode should be set to zero at first entry to set up the coefficients
for fitting the N points (X,Y) and greater than zero thereafter for
finding points on the same curve. XB is the value of the abscissa X at
which the value of the ordinate YB is desired. Since the slope boundary
conditions are required for the mein program, XB are the values of the x
grid points X(I) for which the contours are defined, YP and YPP are the
first and second derivatives of the fitted curve at the point ¥ = XB.

E and W are storage required byt he program and both must be at least 3N
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long. The indices JJ indicate whether end points of the fitted curve
satisfy the slope or curvature conditionms.

JJ(1) = C 2nd derivative at left end point given by D(1).

JJ(1) = 1 1st derivative at left end point given by D(1).
JJ(2) = O 2nd derivative at right end point given by D(2).
JJ(2) = 1 lst derivative at right end point given by D(2).

A thickness ratio DELTA and mean dimensionless radii RINNER for the
centerbody and RF for fan cowl must be computed in the program from the
contour data., RINNER is defined as the average of the smallest and largest
radii along the centerbody and is the radius at which the linearized bound-
ary conditions are satisf.ed. The radial grid is constructed so that
RINNER = R(1)-(R(2)-R(1))/2. The thickness ratic DELTA is the difference
between maximum and minimum radii of the centerbody divided by its length.
Tor the computed examples, this length was conveniently chosen as the dis-
tance fram the duct fan plane in Figure 2b to the point of maximum tody

radius.

Similarly, the mean radius RF at which the linearized boundary conditions
on the fan cowl, on the outer duct wall, and on the free jet boundary are
satisfied is the average between minimum duct radius and maximum cowl
radius. The radial grid is set up so that the midpoint between R(JM) and
R(J4+1) is the radius XF. With RF and RINNER computed in the subroutine
BODY, the main program computes the radial grid points, Evenly spaced
points are computed for the duct flow and the increments between radial
positions of the exterior flow are stretched by the factor DRFAC defined

in the namelist PARAM,
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3.

For the boundary conditions required in the main program, the BODY
subroutine must compute the derivatives divided by the value of DELTA for
the centerbody, outer duct wall, and the fan cowl., The notation used by

the main program ia:

RX(I), I = 1 to IMX. Slope of centerbody divided by DELTA.
RLX(I), I = 1 to IO. Slope of outer wall divided by DELTA.

RUX(I), I = 1 to IO. Slope of fan cowl divided by DELTA.

In summary, the subroutine BODY must be programmed to compute RINNER,
the mean radius of the centerbody; RF, the mean location of outer duct wall,
fan cowl, and free jet streamline boundary; and the slope boundary data
RX, RLX, and RUX defined above at the x grid points., The subroutine must
also compute the dimensionless radii of the centerbody, RS1l; outer duct

wall, RS2; and fan cow, RS3, which are required for the subroutine STRMLN.

Subroutine STRMLN

This subroutine computes the radial position of the streamlines at the

x mesh positions. Along each radial mesh line R(J) the streamline is

X¢
R (Xg) = (By(=m) = xj (?(: /ﬁ)dx
4

where [ is the complete velocity potential, In terms of the perturbation

defined by

AY

potential, ¥ , this becomes, since r = Tr,ad € . g .
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2 Xy
R (X)) Ry » f/M; q A x
J L

for points inside the duct and X,
H
AR,(X:’) - (x) = f! 7:';(&
: ]

for points outside the duct flow. The derivative cfy at the points R(J)
is found by fitting a polynomial through three adjacent points along a line
x constant and differentiating it to find ‘f,— . The x integration is per-

formed by the trapezoidal rule.

4. Description of Printout
After the printing of the parameter 1list, the coordinates and slcpe of
the lower and upper fan contours and of the nacelle are printed for values
of x corresponding to the mesh points. The actual slopes are printed in
the column labeled DER (for derivative). The slopes divided by the thickness
parameter are used as boundary conditions in the main program and are
designated by RX, RLX, and RUX for the lower fan contour, upper fan contour,
and nacelle, respectively. The following is a glossary of the notation used
in the printout,
P(I,J) Valus of perturbation velocity potential at X = X(I), R = R(J)
of the mesh
PHSX  Value of P, at R(aM).
PHX(I,J) Value of & at X(I), R(J). oy
R Dimensionless radial variable. (Multiplied by ‘C:M‘;'sg &
for printout of PHIX).
PHIX Boundary valuas of ‘ﬂ‘ at x = Q.
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At every NP iteration through the mesh a partial printout is made for
the purpose of monitoring the convergence. At this time, the number of
iterations required for each column is printed by two rows of integers in
groups of ten. The first row of integers corresponds to “he column itera-
tion in the duct for I S IO and the entire column for I > IO. The
second row corresponds to column iterating for the region above the nacelle.
The maximum error is printed out next along with the I,J point of the mesh

at which it occurs.

At the twelve axial positions designed at ILINE(K) two rows of ? at Js=)
and JM are then printed followed by two rows of Vx at J = JM and 1.
The eighth row gives the single quantity A P at X = X(I0), the nacelle
trailing edge. SIvery NA times the value of ¥} at the duct input is

calculated, printed, and updated.

In the final printout from the subroutine PRTOUT, the column variables

are
CPB Coefficient of pressure on the body based on the exterior
stream conditions,
CPs Coefficient of pressure on the free streamline based on the
exterior stream.
PHI Value of ‘f along radial position J = JM,
R-RF Deviation of free streamline from the trailing edge radial
position,
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5. Operation of the Program

By means of the intermediate printout every NP times, the rate of

initially prescribed uniform flow ( 0, MODIN=1) usually comverge success-
fully. When the jet Mach number is chosen greater than unity, starting
with ¥ = 0 leads to an immediate arithmetic error stop when the program
encounters a negative index for the P(I,J) variables. To find & solution
for a supersonic free jet, the Mach number M

J
small increments such as AM = 0.05 or 0,1, starting with a subsonic value

(XMJ) must be increased by

and obtaining partial convergence at each Mach number, If the change in
Mach number is too great, the solution may take longer to converge or it
may diverge. Considerable computing time in obtaining a new solution can
be saved by using the P(I,J) grid data from a solution for which the
boundaries are similar to the new configuration and the Mach numbers are
close to those for the desired solution. Solutions with large imbedded
supersonic regions usually make poor starting solutions since they often

cause the iterations to diverge,

There are three programmed stops. STOPS 1 and 2 occur with successful
completion of the computations, STOP 1 occurs for MODOUT=l for which no
data is punched, STOP 2 occurs for MODOUT=2 for which the potential field
is punched on cards as a starting sclution for a later run. STOP 3 cccurs
when the maximum velue of the difference between consecutive values of

exceeda 5, indicating that the solution is diverging.

A quantity important to the convergence is the value of Y;‘ at

the fan plane (PXIN in PARAM list), When only a fair estimate is provided
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and the value is not corrected in the iteration process, it was found that
the solution converged to a minimum value for the error (ERR) which was
greater than 0,000l and then started to diverge. Improving the value of
PXIN caused the solution to converge to a smaller minimum value of ERR
before again starting to diverge. In the program, PXIN is updated every
NA times by estimating the diameter of the jet far downstiream, computing
the mass flow rate through this cross section, and determining ¢ (PXIN)
which yields this value of the mass flow rate at the fan plane. The value
of 53‘ determined this way is close to that value of 73‘ which leads to
the most converged solution but not necessarily equal to it, because of the

approximate way of computing the downstream duct mass flow,
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